
uLake Ltdu a e tduLake Ltd
Innovative Publisher of Mathematics Texts

Year 13
Calculus

Workbook
Robert Lakeland & Carl Nugent

EAS



 Achievement Standard  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

 Identifying Features From Graphs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

 The Derived Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

 Differentiating Power Functions and Polynomials  . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

 Differentiating Composite Functions (The Chain Rule) . . . . . . . . . . . . . . . . . . . . . . . 91 

 Differentiating Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95

 Differentiating the Natural Logarithm Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98

 Differentiating Trigonometric Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

 Differentiation of Products of Two or More Functions . . . . . . . . . . . . . . . . . . . . . . . .  106

 Differentiation of Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

 Mixed Differentiation Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

 The Gradient of a Curve and the Equation of a Tangent  . . . . . . . . . . . . . . . . . . . . . . 117

 Maximum and Minimum Points of a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

 The Second Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

Contents

Topic Section

 Inside front Explanation of icons used in the book
 cover
 iv Introduction
 v Customising the Workbook for your own learning style
 vi Study Skills 

 Achievement Standard  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

 Surds   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

 Review of Quadratic Equations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

 Solving Quadratic Equations by Completing the Square . . . . . . . . . . . . . . . . . . . . . .  9

 The Quadratic Formula  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

 The Discriminant and the Nature of the Roots  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

 The Remainder and Factor Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

 Solving Cubic Equations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

 Irrational Equations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

 Imaginary and Complex Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

 Complex Roots of Polynomials – Quadratics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

 Complex Roots of Polynomials – Cubics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

 Complex Numbers in Polar Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

 Products and Quotients of Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

  De Moivre’s Theorem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   53

   Complex Roots using De Moivre’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    55

 Loci in the Complex Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    59

 Excellence Questions for Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    63

 Practice External Assessment Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

Page

Complex
  Numbers 3.5

Differentiation 3.6



 Achievement Standard  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167 

 Integration of Polynomials  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168

 Integration of Exponential Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171

 Integration of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173 

 Integration of 1
x

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176

 Integration of Expressions such as ax+ b
x

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178 

 Rational Functions of the Type ax+ b
cx+d

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  180

 Rational Functions of the Type f '(x)
f(x)∫  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183 

 Integration of Trigonometric Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186

 Integration by Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189

 Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193

 Area Under a Curve . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  196

 Rates of Change  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209

 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214

 The Trapezium Rule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216

 Simpson’s Rule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

 General Solution of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224

 Particular Solutions of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226

 Second-Order Differential Equations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229

 Differential Equations with Variables Separated  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233

 Differential Equations of the form y’ = ky  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238

 Further Applications of Differential Equations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242

 Practice External Assessment Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247

Answers Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

  Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  

Formulae  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Topic Section Page

Integration 3.7

 Polynomial Sketching when the Degree ≥ 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

 Graphing Derived Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

 Differentiation of Parametric Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

 Related Rates of Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148

 Applications of Differentiation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

 Practice External Assessment Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



 1EAS 3.5 – Complex Numbers

Year 13 EAS Calculus Workbook – Published by NuLake Ltd New Zealand © Robert Lakeland & Carl Nugent 

This achievement standard involves applying the algebra of complex numbers in solving problems.

◆  This achievement standard is derived from Level 8 of The New Zealand Curriculum and is related to  
 the achievement objectives:
 ❖  manipulate complex numbers and present them graphically     
 ❖  form and use polynomial, and other non-linear equations     
 in the Mathematics strand of the Mathematics and Statistics Learning Area. 

◆ Apply the algebra of complex numbers in solving problems involves:
 ❖  selecting and using methods
 ❖  demonstrating knowledge of concepts and terms
 ❖  communicating using appropriate representations.

◆ Relational thinking involves one or more of:
 ❖  selecting and carrying out a logical sequence of steps

 ❖ connecting different concepts or representations 
 ❖  demonstrating understanding of concepts 
 ❖  forming and using a model; 
	 and	relating	findings	to	a	context,	or	communicating	thinking	using	appropriate	mathematical		 	
 statements.

 ◆  Extended abstract thinking involves one or more of:
 ❖  devising a strategy to investigate or solve a problem

 ❖  identifying relevant concepts in context 
 ❖  developing a chain of logical reasoning, or proof 
 ❖  forming a generalisation; 
 and also using correct mathematical statements, or communicating mathematical insight.

◆ Problems are situations that provide opportunities to apply knowledge or understanding of   
 mathematical concepts and methods.  Situations will be set in real-life or mathematical contexts.

◆ Methods include a selection from those related to:  
 ❖  quadratic and cubic equations with complex roots 
 ❖  Argand diagrams
 ❖  polar and rectangular forms 

 ❖  manipulation of surds
 ❖  manipulation of complex numbers
 ❖  loci
 ❖  De Moivre’s theorem
 ❖  equations of the form zn = r cis θ , or zn = a + bi where a and b are real and n is    
  a positive integer.

Achievement Achievement with Merit Achievement with Excellence
•	 Apply the algebra of complex 

numbers in solving problems.
•	 Apply the algebra of complex 

numbers, using relational 
thinking, in solving problems.

•	 Apply the algebra of complex 
numbers, using extended 
abstract thinking, in solving 
problems.

Complex Numbers 3.5

©
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Completing the Square

Solving Quadratic Equations by Completing the Square

Example
Use completing the square to solve the quadratic 
equation
                    x2	–	6x	+	2	=	0

Put the constant on the right-hand side 
 x2 – 6x  = –2
Complete the square with a = –3 (half the –6).

 x2 – 6x + (–3)2 = –2 + (–3)2

 x2 – 6x + 9 = –2 + 9

	 (x	–	3)2 = –2 + 9

	 (x	–	3)2 = 7 

Solve

 x – 3 = ±  7

 x = 3 ±  7

 x = 3 +  7  and x = 3 –  7

Not all quadratics factorise.  Therefore we need a 
technique that will enable us to solve quadratics 
that	do	not	factorise.		The	first	technique	we	look	at	
is called completing the square.

Consider the pattern

	 									(x	±	a)2  = x2 ± 2ax + a2

This expression is called a perfect square and is 
the basis of completing the square. 

The method requires us to rewrite the quadratic 
as a perfect square adjusting the constant term 
to match the given quadratic.

We	then	take	the	square	root	of	both	sides	of	the	
expression and make x the subject to obtain the 
solution(s).

Example
Use completing the square to solve the quadratic 
equation
                   2x2	+	4x	–	8	=	0

Put the constant on the right-hand side 
 2x2 + 4x  = 8

Common factor 2

 2(x2	+	2x)	 =	8

Divide both sides by 2     
 x2 + 2x = 4    
Complete	the	square	with	a	=	1	(half	of	2)

 x2	+	2x	+	(1)2	 =	4	+	(1)2

	 (x	+	1)2 = 4 + 1

	 (x	+	1)2 = 5 
Solve
 x + 1 = ±  5

 x = –1 ±  5

 x = –1 +  5  and x = –1 –  5

The square of half the coefficient of 
the x term will complete a perfect 
square.

To find the constant when completing 
the square, square the ‘a’ of (x ± a)2 and 
add or subtract the required amount.

Solving a quadratic by completing the 
square is the easiest method when you 
are expected to express the answer in 
surd form.

©
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60 EAS 3.5 – Complex Numbers

For	|z	–	1|	=	|z	–	3|describe	the	locus	of	z	in	the	
complex plane and obtain a Cartesian equation for 
the locus.

Example

                                   |z – 1| = |z – 3|
Substituting z = x + yi    
we write         |(x + yi)	–	1|	=		|(x	+	yi)	–	3|	 	
	 						|(x	–	1)	+	yi|	=		|(x	–	3)	+	yi|  
        (x −1)2 + y2 = (x – 3)2 + y2   

	 										(x	–	1)2 + y2	=	(x	–	3)2 + y2  
     x2 – 2x + 1 + y2 = x2 – 6x + 9 + y2  
                                    –2x + 1 = –6x + 9   
                          4x = 8    
                            x = 2

The locus of z is a vertical line through 2.

For	|z	|	+	|z	–	2|=	6	describe	the	locus	of	z	
geometrically and obtain a Cartesian equation for 
the locus.

Example

                                     |z | + |z – 2| = 6
Substituting z = x + yi   
we write  |(x + yi)|	+	|(x	+	yi)	–	2|	=	6	 	 	
                  |(x + yi)|	+	|(x	–	2)	+	yi| = 6   
   x2 + y2 + (x – 2)2 + y2  = 6  

	 																									(x	–	2)2 + y2 = (6 – x2 + y2 + (x – 2)2 + y2)2

 x2 – 4x + 4 + y2 = 36 – 12 x2 + y2 + (x – 2)2 + y2 + x2 + y2

              –4x – 32 = –12 x2 + y2 + (x – 2)2 + y2

          (–4x	–	32)2 = 144(x2 + y2)

            16x2	+	256x	+	1024	=	144x2 + 144y2

         128x2 – 256x + 144y2	=	1024

           128(x2	–	2x)	+	144y2	=	1024

													128(x	–	1)2 + 144y2 = 1152

                        
(x –1)2

9
+ y

2

8
= 1

The	locus	of	z	is	an	ellipse	centre	(1,	0)	with	major	
axis 6 and minor axis 2 8 .

–1–2–3–4 1 2 3 4 5 6 Re

i
2i
3i
4i
5i
6i

Im

–i
–2i
–3i
–4i

7 8

–1–2–3–4 1 2 3 4 5 6 Re

i
2i
3i
4i
5i
6i

Im

–i
–2i
–3i
–4i

7 8

x = 2©
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This achievement standard involves applying differentiation methods in solving problems.

◆  This achievement standard is derived from Level 8 of The New Zealand Curriculum and is related 
to the achievement objectives 

❖  Identify discontinuities and limits of functions.
❖  Choose and apply a variety of differentiation techniques to functions and relations using 

analytical methods.         
◆ Apply differentiation methods in solving problems involves:

❖  selecting and using methods
❖  demonstrating knowledge of concepts and terms 
❖  communicating using representations.

◆ Relational thinking involves one or more of:

❖  selecting and carrying out a logical sequence of steps
❖  connecting different concepts or representations 
❖  demonstrating understanding of concepts
❖  forming and using a model;

 and also relating findings to a context, or communicating thinking using appropriate mathematical 
statements.

◆ Extended abstract thinking involves one or more of:

❖  devising a strategy to investigate or solve a problem
❖  identifying relevant concepts in context 
❖  developing a chain of logical reasoning, or proof
❖  forming a generalisation;

 and also using correct mathematical statements, or communicating mathematical insight.

◆ Problems are situations that provide opportunities to apply knowledge or understanding of 
mathematical concepts and methods.  Situations will be set in real-life or mathematical contexts.

◆ Methods include a selection from those related to:

❖  derivatives of power, exponential, and logarithmic (base e only) functions 
❖  derivatives of trigonometric (including reciprocal) functions    
❖  optimisation          
❖  equations of normals 
❖  maxima and minima and points of inflection
❖  related rates of change
❖  derivatives of parametric functions    
❖  chain, product, and quotient rules 
❖  equations of normals 
❖  properties of graphs (limits, differentiability, continuity, concavity).

Achievement Achievement with Merit Achievement with Excellence
•	 Apply differentiation 

methods in solving problems.
•	 Apply differentiation 

methods, using relational 
thinking, in solving problems.

•	 Apply differentiation 
methods, using extended 
abstract thinking, in solving 
problems.

Differentiation 3.6

©
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The Derived Function cont...

The term ‘by first principles’ should 
alert you to use this approach in 
deriving the function.   

Differentiation by first principles is a Merit 
concept of ‘demonstrating understanding of 
concepts’.

f(x + h)

y

x

f(x)

x + hx

P
Q

f(x+h) - f(x)
h

If we further reduce the value of h even more and 
find	the	limit	as	h	→ 0, then the gradient of the chord 
PQ is essentially the gradient of a tangent at the  
point P.

f(x + h)

y

x

f(x)

x + hx

P
Q

f(x+h) - f(x)
h

P

Q

h

As h approaches 0 the gradient of the chord 
approaches that of the tangent.  Therefore we can 
find	the	gradient	or	slope	of	a	tangent	to	a	graph	at	
any point, by using the formula

 
m = lim

h→0

f(x + h) – f(x)
x + h – x

The notation f’(x) is used to denote the gradient 
function (instead of the constant m) and  
x	+	h	–	x		simplifies	to	h.

 
lim
h→0

f(x + h) – f(x)
h

This	formula	can	be	used	to	find	the	gradient	at	
any point on a curve and also the function f’(x) that 
describes the gradient of the curve.
The derived function is also known as the gradient 
function	and	the	process	of	finding	it	is	called	
differentiation.  
When we use this formula to calculate the derived 
function we are differentiating by first principles.

Example
Differentiate	by	first	principles	the	function	
 f(x) = x2 – 5

We	begin	by	finding	an	expression	for	
f(x + h) = (x + h)2 – 5  
              = x2	+	2xh	+	h2 – 5

and then use the formula 

f’(x) = 
 
lim
h→0

f(x + h) – f(x)
h

We substitute for f(x) and f(x + h).

f’(x) = lim
h→0

x
2
+ 2xh+h

2
– 5( )− x2 − 5( )
h

f’(x) = lim
h→0

2xh+h
2

h

Dividing through by h gives

f’(x) = lim
h→0

2x+h

f’(x)	=	2x	as	h	tends	to	0

f’(x) = 

m = 

If we now reduce the value of h, the distance 
between the points P and Q will get smaller. 

Example
Differentiate	by	first	principles	the	function	
 f(x) = 3x2	+	2x	+	4

We	begin	by	finding	an	expression	for	
f(x + h) = 3(x + h)2	+	2(x	+	h)	+	4	 
              = 3x2 + 6xh + 3h3	+	2x	+	2h	+	4

and then use the formula 

f’(x) = 
 
lim
h→0

f(x + h) – f(x)
h

f’(x) =
 
lim
h→0

3x2 + 6xh + 3h2 + 2x + 2h + 4( ) – 3x2 + 2x + 4( )
h

f’(x) = 
 
lim
h→0

6xh + 3h2 + 2h
h

Dividing through by h gives

f’(x) =  
lim
h→0

6x + 3h + 2

f’(x)	=	6x	+	2	as	h	tends	to	0

©
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Graphing Derived Functions

Graphing the Derived 
Function

To draw a sketch of the derived function f’(x) from 
a graph of the function f(x) we focus on key features 
of the function f(x) and interpret what these mean 
in terms of the derived function f’(x).

Features of the graph of f(x) to look out for and the 
corresponding features of f’(x) are:

1.   the graph of f(x) is increasing  f’(x) > 0

2.		 the	graph	of	f(x)	is	decreasing	  f’(x) < 0

3.  stationary points (maximum or minimum) of  
 f(x)  x intercepts of f’(x)

4.	 points	of	inflection	of	f(x)	  turning points  
 of f’(x)

5.	 stationary	points	of	inflection	of	f(x)	    
 turning points on the x axis of f’(x)

6. vertical asymptotes of f(x)  vertical   
 asymptotes of f’(x) 

7. horizontal asymptotes of f(x)  horizontal  
 asymptotes of f’(x) 

8. spikes or discontinuities of f(x)  f’(x) is  
	 undefined.

A good technique is to begin by drawing a set of 
axes directly under a copy of y = f(x) so the scales 
on the x axis line up.      
Next locate the stationary points (turning points) 
of f(x) which line up with the x intercepts of f’(x). 
Then	look	for	the	points	of	inflection	of	f(x)	which	
will line up with the turning points of f’(x).  

Next identify where f(x) is increasing, which means 
that f’(x) is above the x axis.   
Then identify where f(x) is decreasing which means 
that f’(x) is below the x axis. 

Note any vertical or horizontal asymptotes of f’(x) 
and mark these in on f’(x).   
Note any ‘spikes’ or discontinuities (abrupt changes 
in	the	gradient)	of	f(x)	as	f’(x)	will	be	undefined	for	
these values.     
Draw	a	smooth	curve	to	fit	this.	 	 	 	
Study the example on the right and the following 
page to understand the process of graphing the 
derived function f’(x) when given a sketch of f(x).

Example

The graph of y = f(x) is drawn below.  Sketch the 
graph of the derived function y = f’(x).

f(x)

x

f(x)

x

f’(x)

x

We begin by drawing a set of axes directly 
under a copy of y = f(x) so the scales on the 
x axis line up.

We then locate the stationary points (turning points) 
on y = f(x), labelled A, B and C.  These become the x 
intercepts for y = f’(x).
There	are	two	points	of	inflection	on	y	=	f(x),	labelled	
D and E.  These become turning points on y = f’(x).
Next we identify where f(x) is increasing (+), which 
means f’(x) is above the x axis.
Then we identify where f(x) is decreasing (–), which 
means f’(x) is below the x axis.
There are no vertical or horizontal asymptotes or 
discontinuities or ‘spikes’ on y = f(x).
We now draw a smooth curve to sketch y = f’(x).

A

B

C

D E
+

+
+
+
+

+
+

+
–

–
–

–

–

–
–

A
B

C

D

E
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This achievement standard involves applying integration methods in solving problems.

◆  This achievement standard is derived from Level 8 of The New Zealand Curriculum and is related to  
 the achievement objectives:
 ❖  choose and apply a variety of integration and anti-differentiation techniques to functions   
  and relations using both analytical and numerical methods     
 ❖  form differential equations and interpret the solutions      
 in the Mathematics strand of the Mathematics and Statistics Learning Area. 

◆ Apply integration methods in solving problems involves:
 ❖  selecting and using methods
 ❖  demonstrating knowledge of concepts and terms      
 ❖  communicating using appropriate representations.

◆ Relational thinking involves one or more of:
 ❖  selecting and carrying out a logical sequence of steps

 ❖ connecting different concepts or representations 
 ❖  demonstrating understanding of concepts 
 ❖  forming and using a model; 
	 and	relating	findings	to	a	context,	or	communicating	thinking	using	appropriate	mathematical		 	
 statements.

 ◆  Extended	abstract	thinking	involves	one	or	more	of:
 ❖  devising a strategy to investigate or solve a problem

 ❖  identifying	relevant	concepts	in	context 
 ❖  developing	a	chain	of	logical	reasoning,	or	proof 
 ❖  forming a generalisation; 
	 and	using	correct	mathematical	statements,	or	communicating	mathematical	insight.

◆ Problems are situations that provide opportunities to apply knowledge or understanding of   
	 mathematical	concepts	and	methods.		Situations	will	be	set	in	real-life	or	mathematical	contexts.

◆ Methods include a selection from those related to:  
 ❖  integrating	power,	polynomial,	exponential	(base	e	only),	trigonometric,	and	rational		 	
  functions 
 ❖  reverse	chain	rule,	trigonometric	formulae
 ❖  rates of change problems
 ❖  areas	under	or	between	graphs	of	functions,	by	integration
 ❖  finding	areas	using	numerical	methods,	e.g.	the	rectangle	or	trapezium	rule
 ❖  differential	equations	of	the	forms	y'	=	f(x)	or	y"	=	f(x)	for	the	above	functions	or	situations		
	 	 where	the	variables	are	separable	(e.g.	y'	=	ky)	in	applications	such	as	growth	and	decay,			
	 	 inflation,	Newton's	Law	of	Cooling	and	similar	situations.

Achievement Achievement with Merit Achievement with Excellence
•	 Apply integration methods in 

solving problems.
•	 Apply	integration	methods,	

using	relational	thinking,	in	
solving problems.

•	 Apply	integration	methods,		
using	extended	abstract		
thinking,	in	solving	problems.

Integration 3.7
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Find	the	area	between	the	curve	f(x)	=	x3	–	4x2	–	x	+	4	
and	the	line	g(x)	=	4	–	x	from	x	=	0	to	x	=	4.

Find the area between the curve 
f(x)	=	2x3	+	3x2	–	5x	–	6	and	the	x	axis	from	 
x	=	–2	to	x	=	1.

 Area  = Area above + Area below 

 Area  = 2x3 + 3x2 – 5x – 6 dx +
– 2

–1

∫

                  2x3 + 3x2 – 5x – 6 dx
– 1

1

 Area  = 
2
4
x4 + x3 – 5

2
x2 – 6x⎡

⎣⎢
⎤
⎦⎥ – 2

–1

+

              
2
4
x4 + x3 – 5

2
x2 – 6x⎡

⎣⎢
⎤
⎦⎥ –1

1

  = 
1
2
–1 – 5

2
+ 6⎛

⎝⎜
⎞
⎠⎟
– 16

2
– 8 – 20

2
+12⎛

⎝⎜
⎞
⎠⎟
+

   
1
2
+1 – 5

2
– 6

⎛
⎝⎜

⎞
⎠⎟
–
1
2
–1 –

5
2
+ 6⎛

⎝⎜
⎞
⎠⎟

  = 3 – 2 +|–7 – 3|

	 	=	1	+	10

  = 11 units2

f(x)

x1
4

g(x)

–1

4

-1-

f(x)

x
1

2

ExampleExample

Although the curve is above and below 
the	x	axes	we	are	only	interested	in	the	
enclosed area.

If	we	let		 D(x)	=	g(x)	–	f(x)

then	as	g(x)	is	always	above	f(x)	from	x	=	0	to	x	=	4	
then	D(x)	is	positive	in	this	region.

Therefore	we	can	integrate	it	to	find	the	area	
enclosed.

 Area = D(x)dx
0

4

∫

  =
 
g(x)− f(x)dx

0

4

∫

  =
 
(4−x)−(x3−4x2−x+ 4)dx

0

4

∫

  =
 

−x3+ 4x2 dx
0

4

∫

  = 
−x4
4 +

4
3 x

3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
0

4

  = 2113  
units2

It is important we set D(x) equal to the 
higher expression (g(x)) minus the lower 
expression f(x)) over the range otherwise 
the integral would be negative.
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Each of the pairs of columns is capped by a best 
fit	parabola.		The	area	of	each	pair	of	columns	is	
calculated	to	find	the	total	area.

Looking	at	just	the	first	pair	of	columns	(width	h)	
the area is given by

 Area1 =
 
h
3 y0+ 4y1+ y2( )

Now the area of all three pairs of columns 
becomes

 Area = 
h
3 (y0 + 4y1 + y2 + y2 + 4y3 + y4+ y4 + 4y5 + y6)       

 Area = 
h
3 (y0 + 4y1 + 2y2 + 4y3 + 2y4 + 4y5 + y6)

 Area = 
h
3 (y0 + y6 + 4yOdd + 2yEven)

Simpson’s Rule

Simpson’s Rule

Simpson’s	Rule	models	a	definite	integral	problem	
by dividing the area up into sets of column pairs 
of constant width h.

a b

f(x)

x

a b

f(x)

x

 P
ara

bola 1 Parabola 2
Parabola 3

To derive the rule for the area of a pair of columns 
capped with a parabola we simplify the problem by 
having	one	pair	either	side	of	the	y	axes	and	then	
extend	our	answer.		Let	the	y	ordinates	at	the	top	
of	the	first	pair	of	columns	be	y0,	y1 and y2.  The 
columns are each of width h.

We now derive a formula for the area under the 
parabola	with	equation	f(x)	=	Ax2	+	Bx	+	C	passing	
through	the	points	(–h,	y0),	(0,	y1)	and	(h,	y2).

Integrating	f(x)	to	find	the	area	of	the	two	columns

 Area = Ax2+Bx+Cdx
−h

h

∫

  = Ax
3

3 +
Bx2
2 +Cx

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−h

h

  = 2Ah
3

3 + 2Ch

  = h
3 2Ah

2+6C( )
   

Since	the	points	(–h,	y0),	(0,	y1)	and	(h,	y2)	are	on	the	
parabola and y1	=	C	is	the	y	intercept,	they	satisfy		
	f(x)	=	Ax2	+	Bx	+	C.			 	 	 	 	
So y0	 =	A(–h)2	+	B(–h)	+	y1    

 y0 = Ah2	–	Bh	+	C

 y1 = C

and y2 = Ah2	+	Bh	+	C	

We note that 2Ah2	+	6C			=	(Ah2	–	Bh	+	C	)	+	4C		 	
	 	 	 	 	 +	(Ah2	+	Bh	+	C	)		
     = y0 + 4y1 + y2

Therefore the area under the parabola is 

   
= h
3 y0+ 4y1+ y2( )

  
Adding more pairs of columns results in the standard 
Simpson’s	Rule.		Moving	the	first	pair	of	columns	
sideways does not change the generality but makes 
the maths more tedious.  This derivation is not 
required for NCEA 3.

y1 y2y0

–h h x

f(x)

y0

a b

f(x)

x

y1 y6
y5y4y3

y2

Partial Derivation of 
Simpson’s Rule
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268 EAS 3.6 – Differentiation Answers

Page 136 
288.  a) Maximum (1, 0)    
  Minimum (3, –4)    
 b) Inflection (2, –2)    
 c)  

-2
-1

-3

-2 -1-3 2 x1 3 4 5 6

-4

1
2
3
4
y

 d) x > 2

289.  a) A = (–0.645, 0)    
  B = (–0.5, 0.25)     
  C = (0, 0)    
  D = (0.5, –0.25)    
  E = (0.645, 0)        
 b) At the points of inflection 
  x = 0, ±0.3536    
  Gradient when x = 0.3536 
  is –0.938 (3 sf)  

290.  a) Maximum point (0, 0)   
 b)

2 4 6 8-2-4-6

2

4

6

-2

-4

-6

y

x

 
 c) limit = 2

Page 139

291. 

f’(x)

x

Page 139 cont...

292. 

1

f’(x)

x
–1

293.

f’(x)

x–2 2

294.
f’(x)

–5 6–3 3

5

2

Page 140

295.

f’(x)

x–1–4

2

4–2.5

0.4

–2

296.

1

f’(x)

x

297. a) x = 0

 b) x = 1 and 3

 c) Stationary point of    
  inflection because at    
  x = 3, y = f’(x) is both    
  an intercept and a    
  stationary point.

Page 140 cont...

297. d)

10

2

4

6

8

12

-2
-4
-6
-8

-10

1 2 3 4-1-2-3 x

y

-12

5 6 7-4

y = f’(x)

Page 142 

298.  
 
dy
dx

 = 
 

3
10t

299. 
 
dy
dx

 = 
 
t
2

300. 
 
dy
dx

 = 
 

– 2
5

tan t

301. 
 
dy
dx

 = 
 

cost
et

302. 
 
dy
dx

 =  4t t

303. 
 
dy
dx

 = 2t2(1 – t)

304. 
 
dy
dx

 = 
 
3t2 – 1
2t – 3

305. 
 
dy
dx

 = 
 

2t2 + 1
t2 – 1

306. 
 

d2y
dx2  = 

 
3
4t

307. 
 

d2y
dx2  = 

 

− 5
16cos3 t

Page 143 

308. 
 

d2y
dx2  = –3 sec3 t

309. 
 

d2y
dx2  = 

 

− (t + 1)
t2e2t

310.  
 
dy
dx

 = 
 

2
2t + 3

 At t = 0 the tangent is 
 3y – 2x = 0

4

-4

-8

-12

x

y

-4 4 8 12 16

1
2

4
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